

SWIMMING POOL HEAT PUMP UNIT

Installation & Instruction Manual

Models HP50AEE HP70AFF

Hayward Pool Products Canada, Inc. 2880 Plymouth Dr., Oakville, ON L6H 5R4 Haywardpool.ca / 1.888.238.7665

CONTENTS

1. Preface	1
2. Specifications 2.1 Performance Data of Swimming Pool Heat Pump Unit	2 2
2.2 Dimensions for Swimming Pool Heat Pump Unit	3
3. Installation and Connection	4
3.1 Installation of System	4
3.2 Swimming Pool Heat Pumps Location 3.3 How Close to Your Pool?	5 5
3.4 Swimming Pool Heat Pumps Plumbing	5 6
3.5 Swimming Pool Heat Pumps Electrical Wiring	7
3.6 Initial Start-up of the Unit	7
4. Usage and Operation	8
4.1 Color screen wire controller interface introduction	8
4.2 Color screen wire controller function introduction	10
4.3 Parameter list and breakdown table	15
5. Maintenance and Inspection	17
6. Appendix	18
6.1 Connection of PCB: Illustration	18
6.2 Wiring Diagram	20
6.3 Exploded View and Spare Parts List 6.4 Warranty	21

1. PREFACE

- In order to provide our customers with quality, reliability and versatility, this product has been made to strict production standards. This manual includes all the necessary information about installation, debugging, discharging and maintenance. Please read this manual carefully before you open or maintain the unit. The manufacture of this product will not be held responsible if someone is injured or the unit is damaged, as a result of improper installation, debugging, or unnecessary maintenance. It is vital that the instructions within this manual are adhered to at all times. The unit must be installed by qualified personnel.
- The unit can only be repaired by qualified installer centre, personnel or an authorised dealer.
- Maintenance and operation must be carried out according to the recommended time and frequency, as stated in this manual.
- Use genuine standard spare parts only.
 Failure to comply with these recommendations will invalidate the warranty.
- Swimming Pool Heat Pump Unit heats the swimming pool water and keeps the temperature constant. For split type unit, The indoor unit can be Discretely hidden or semi-hidden to suit a luxury house.

Our heat pump has following characteristics:

1 Durable

The heat exchanger is made of PVC & Titanium tube which can withstand prolonged exposure to swimming pool water.

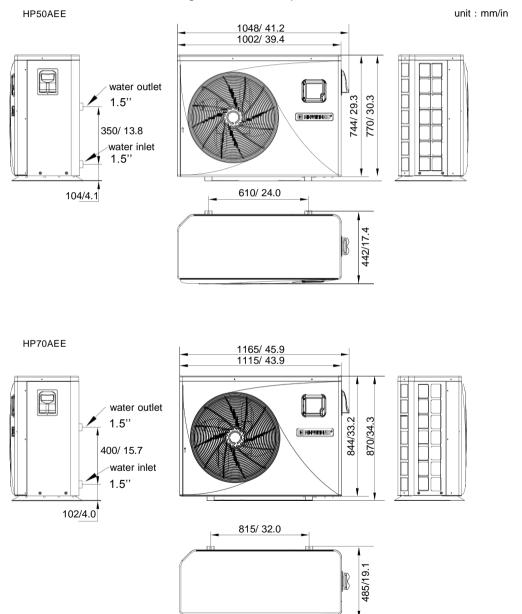
2 Installation flexibility

The unit can be installed outdoors or indoors.

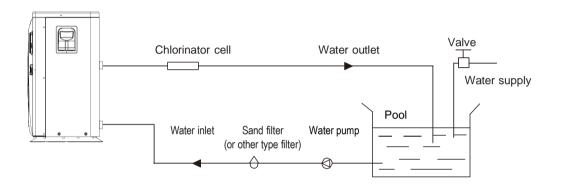
- 3 Quiet operation
 - The unit comprises an efficient rotary/ scroll compressor and a low-noise fan motor, which guarantees its quiet operation.
- 4 Advanced controlling
 - The unit includes micro-computer controlling, allowing all operation parameters to be set. Operation status can be displayed on the LCD wire controller. Remote controller can be chosen as future option.

2.SPECIFICATION

2.1 Performance data of Swimming Pool Heat Pump Unit


• REFRIGERANT: R410A

UNIT	Model	HP50AEE	HP70AEE
Range	kW	2.8-14.7	3.4-18.9
Kange	Btu/h	9500-50000	11600-65000
Rated Heating Power Input	kW	2.68	3.86
Range	kW	0.2-2.68	0.31-3.86
Rated Running Current Input	Α	12.0	16.9
Range	Α	1.1-12.0	1.5-16.9
Power Supply	V/Hz	208-230V~/60Hz	208-230V~/60Hz
Compressor Quantity		1	1
Compressor		rotary	rotary
Fan Quantity		1	1
Fan Power Input	W	100	100
Fan Rotate Speed	RPM	500-650	300-750
Fan Direction		horizontal	horizontal
Noise	dB(A)	43-53	42-57
Water Connection	inch	1.5"	1.5"
Water Flow Volume	m³/h /gpm	4.1/18.5	6.2/ 27.3
Water Pressure Drop(max)	kPa/psi	4.3/ 0.62	4.9/ 0.71
Unit Net Dimensions(L/W/H)	mm/ in	1048×442×770/ 41.2×17.4×30.3	1165×485×870/ 45.9×19.1×34.3
Unit Ship Dimensions(L/W/H)	mm/ in	1130×460×780/ 44.5×18.1×30.7	1210×510×880/ 47.6×20.1×34.6
Net Weight	kg	see nameplate	
Shipping Weight	kg	see packag	ge label


Rated Heating: *Outdoor air temp: 27° C/24.3°C, Inlet water temp: 26.7° C During heating: Running ambient temperature: -5° C~43°C.

2.SPECIFICATION

2.2 The dimensions for Swimming Pool Heat Pump Unit

3.1 Installation illustration

Installation items:

The factory only provides the main unit and the water unit; the other items in the illustration are necessary spare parts for the water system ,that provided by users or the installer.

Attention:

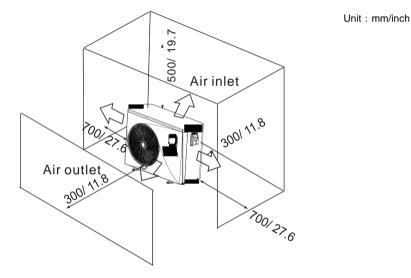
Please follow these steps when using for the first time

- 1. Open valve and charge water.
- 2.Make sure that the pump and the water-in pipe have been filled with water.
- 3.Close the valve and start the unit.

ATTN: It is necessary that the water-in pipe is higher than the pool surface.

The schematic diagram is for reference only. Please check the water inlet/outlet label on the heat pump while plumbing installation.

3.2 Swimming Pool Heat Pumps Location


The unit will perform well in any outdoor location provided that the following three factors are presented:

1. Fresh Air - 2. Electricity - 3. Pool filter piping

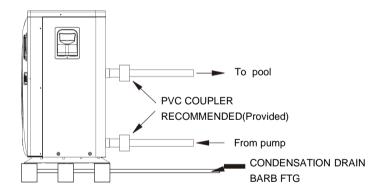
The unit may be installed virtually anywhere outdoors. For indoor pools please consult the supplier. Unlike a gas heater, it has no draft or pilot light problem in a windy area.

DO NOT place the unit in an enclosed area with a limited air volume, where the units discharge air will be re-circulated.

DO NOT place the unit to shrubs which can block air inlet. These locations deny the unit of a continuous source of fresh air which reduces it efficiency and may prevent adequate heat delivery.

3.3 How Close To Your Pool?

Normally, the pool heat pump is installed within 7.5 metres of the pool. The longer the distance from the pool, the greater the heat loss from the piping. For the most part ,the piping is buried. Therefore, the heat loss is minimal for runs of up to 15 meters (15 meters to and from the pump = 30 meters total), unless the ground is wet or the water table is high. A very rough estimate of heat loss per 30 meters is 0.6 kW-hour, (2000BTU) for every 5 $^{\circ}$ C difference in temperature between the pool water and the ground surrounding the pipe, which translates to about 3% to 5% increase in run time.


3.4 Swimming Pool Heat Pumps Plumbing

The Swimming Pool Heat Pumps exclusive rated flow titanium heat exchanger requires no special plumbing arrangements except bypass(please set the flow rate according to the nameplate). The water pressure drop is less than 10kPa at max. Flow rate. Since there is no residual heat or flame Temperatures, The unit does not need copper heat sink piping. PVC pipe can be run straight into the unit.

Location: Connect the unit in the pool pump discharge (return) line downstream of all filter and pool pumps, and upstream of any chlorinators, ozonators or chemical pumps.

Standard model have slip glue fittings which accept 32mm or 50 mm PVC pipe for connection to the pool or spa filtration piping. By using a 50 NB to 40NB you can plumb 40NB

Give serious consideration to adding a quick coupler fitting at the unit inlet and outlet to allow easy draining of unit for winterizing and to provide easier access should servicing be required.

Condensation: Since the Heat pump cools down the air about $4-5^{\circ}$ C, water may condense on the fins of the horseshoe shaped evaporator. If the relative humidity is very high, this could be as much as several litres an hour. The water will run down the fins into the basepan and drain out through the barbed plastic condensation drain fitting on the side of the basepan. This fitting is designed to accept 20mm clear vinyl tubing which can be pushed on by hand and run to a suitable drain. It is easy to mistake the condensation for a water leak inside the unit.

NB: A quick way to verify that the water is condensation is to shut off the unit and keep the pool pump running. If the water stops running out of the basepan, it is condensation. AN EVEN QUICKER WAY IS to TEST THE DRAIN WATER FOR CHLORINE - if the is no chlorine present, then it's condensation.

3.5 Swimming Pool Heat Pumps Electrical Wiring

NOTE: Although the unit heat exchanger is electrically isolated from the rest of the unit, it simply prevents the flow of electricity to or from the pool water. Grounding the unit is still required to protect you against short circuits inside the unit. Bonding is also required.

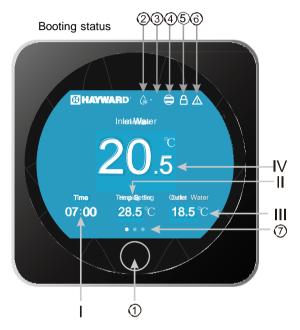
The unit has a separate molded-in junction box with a standard electrical conduit nipple already in place. Just remove the screws and the front panel, feed your supply lines in through the conduit nipple and wire-nut the electric supply wires to the three connections already in the junction box (four connections if three phase). To complete electrical hookup, connect Heat Pump by electrical conduit, UF cable or other suitable means as specified (as permitted by local electrical authorities) to a dedicated AC power supply branch circuit equipped with the proper circuit breaker, disconnect or time delay fuse protection.

Disconnect - A disconnect means (circuit breaker, fused or un-fused switch) should be located within sight of and readily accessible from the unit, This is common practice on commercial and residential air conditioners and heat pumps. It prevents remotely-energizing unattended equipment and permits turning off power at the unit while the unit is being serviced.

3.6 Initial startup of the Unit

NOTE- In order for the unit to heat the pool or spa, the filter pump must be running to circulate water through the heat exchanger.

Start up Procedure - After installation is completed, you should follow these steps:


- 1. Turn on your filter pump. Check for water leaks and verify flow to and from the pool.
- 2. Turn on the electrical power supply to the unit, then press the key ON/OFF of wire controller, It should start in several seconds.
- 3. After running a few minutes make sure the air leaving the top(side) of the unit is cooler(Between 5-10 °C)
- 4. With the unit operating turn the filter pump off. The unit should also turn off automatically,
- 5. Allow the unit and pool pump to run 24 hours per day until desired pool water emperature is reached. When the water-in temperature reach setting, The unit just shuts off. The unit will now automatically restart (as long as your pool pump is running)when the pool temperature drops more than 2°Cbelow set temperature.

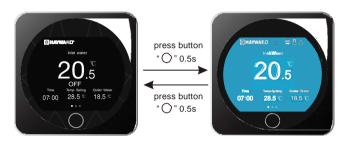
Time Delay- The unit is equipped with a 3 minute built-in solid state restart delay included to protect control circuit components and to eliminate restart cycling and contactor chatter. This time delay will automatically restart the unit approximately 3 minutes after each control circuit interruption. Even a brief power interruption will activate the solid state 3 minute restart delay and prevent the unit from starting until the 5 minute countdown is completed. Power interruptions during the delay period will have no effect on the 3 minute countdown.

4.1. Color screen wire controller interface introduction

4.1.1 Main interface

4.1.2 Function interface

4.1.2 Button and display Description


NO.	Name	Description
1	Time	Show the system time
II	Temp. Setting	Show the target temperature
III	Outlet Water	Show the outlet water temperature
IV	Inlet Water	Show the inlet water temperature
1	ON/OFF or Back	Press to control the unit ON/OFF,or back to the previous interface
2	Defrost icon	The icon will display when the unit working on defrost mode
3	Mode	The icon will display the running mode (heating/ cooling/auto)
4	Compressor icon	The icon will display when the compressor work
(5)	Lock icon	The icon will display when the operation controller is locked
6	Fault icon	The icon will display when the unit fails
7	Current Interface	Slide left or right to switch the interface display
8	Mode	Click to enter mode setting
9	Temp Setting	Click to set the target temperature for current mode
(3)	Silent Mode	Click to switch the silent mode
11)	Silent Timing	Click to to set the silent function timer
12	Time setting	Click to enter the system time setting
(3)	Timer	Click to enter the timing setting for the unit ON/OFF
(4)	Fault	Click to look up the fault history
(5)	Parameter	Click to enter system parameter interface

4.2. Color screen wire controller function introduction

4.2.1 Booting and shutdown

In the main interface:

- 1) In shutdown status, press the ON/OFF button for 0.5s then the unit will be booted.
- 2) In booting status, press the ON/OFF button for 0.5s then the unit will be shut down.

4.2.2 Function selection interface

In the main interface, slide left or right to select the function selection.

Main interface Second interface Third interface Third interface

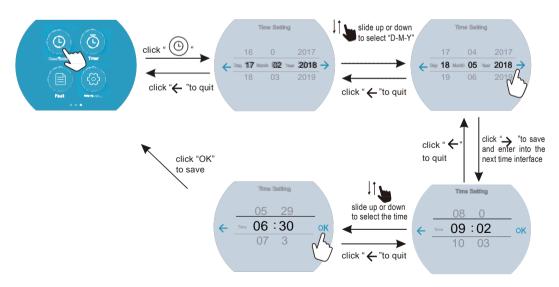
4.2.3 Mode switch

In the Second function interface, click the Mode icon to enter into the Mode Setting interface. Slide up and down to select the mode (Cooling-Heating-Auto), click "OK" to save the setting and back to the previous interface; click Back button " \bigcirc " or " \leftarrow " to quit the settings.

Note: when the unit is designed for single Cooling mode or single Heating mode, the mode can not be switch.

4.2.4 Target temperature setting

In the Second function interface, click " to enter into the Temp Setting interface, slide up or down to select the target temperature, click "OK" to save the setting and back to the previous interface; click Back button " " or " \(\sigma \)" to quit the settings.

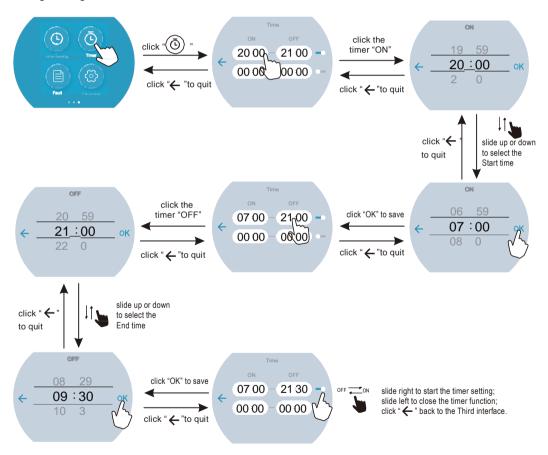


4.2.5 System time setting

In the Third function interface, click "(1)" to enter into Time Setting interface.

Slide up or down to select the DATE, click " \rightarrow " to save and enter into time setting interface; click " \leftarrow " to cancel and back to the prevoius interface.

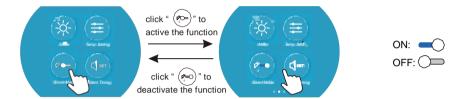
In the time setting interface, slide up or down to select TIME, click "OK" to save and return to the Third function interface; click " \leftarrow " back to the prevoius interface.



4.2.6 Timing settings

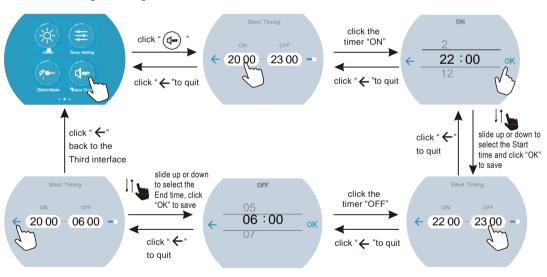
In the Third function interface, click "⑤" to enter into the Time setting interface, click the value of "ON" to enter into the Start time selecting interface, slide up or down to adjust the value, click "OK" to save (click "←" backspace); click the value of "OFF" to enter into End time selecting interface, slide up or down to adjust the value, click "OK" to save (click "←" backspace).

At last, slide right the right round button to active the timing settings or slide it left to Deactivate the timing settings; click "


" back to the third function interface.

4.2.7 Silent Mode and silent timing

(1) Silent Mode


In the Second function interface, click " on active the Silent Mode, the icon show " on, click the icon again the Silent Mode function can be off.

(2) Silent Timing

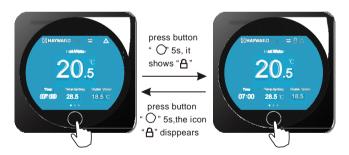
In the Second function interface, click " (the value to adjust the Start time or End time, slide the right round button to active or deactive the Silent Timing function.

Note: ON: OFF .

Note:Start and end time setting value must be among the range of 00:00-23:00, and setting value can be precise to hour digit.

4.2.8 The fault interface

When fault occus, the fault icon "\(\hat{\chi}\)" will display in the main interface.


To check the fault record list, slide to the Third function interface, click " \bigcirc " to enter into the Fault history record interface, click " \rightarrow "or " \leftarrow " to page up or down, the fault interface will record the time, code, name of the fault.

Click "Del" to clean the fault records and press the BACK button " \bigcirc " to return back to the Third function interface.

4.2.8 Keyboard locking

In the Main interface, press the " \bigcirc " button over 5 seconds, the screen is locked, press the " \bigcirc " button over 5 seconds again to unlock the screen.

4.3 Parameter list and breakdown table

4.3.1 Electronic control fault table

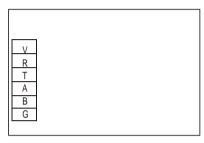
4.3. TETECTIONIC CONTIO			
Protect/fault	Fault display	Reason The temp. Sensor is broken	Elimination methods
Inlet Temp. Sensor Fault	P01	or short circuit	Check or change the temp. Sensor
Outlet Temp. Sensor Fault	P02	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Amibent Temp. Sensor Fault	P04	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Coil 1 Temp. Sensor Fault	P05	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Coil 2 Temp. Sensor Fault	P15	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Suction Temp. Sensor Fault	P07	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Discharge Temp. Sensor Fault	P081	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Exhaust Air over Temp Prot.	P082	The compressor is overload	Check whether the system of the compressor running normally
Antifreeze Temp. Sensor Fault	P09	Antifreeze temp sensor is broken or short circuited	check and replace this temp sensor
Pressure sensor Fault	PP	The pressure Sensor is broken	Check or change the pressure Sensor or pressure
High Pressure Prot.	E01	The high-preesure switch is broken	Check the pressure switch and cold circuit
Low Pressure Prot.	E02	Low pressure1 protection	Check the pressure switch and cold circuit
Flow Switch Prot.	E03	No water/little water in water system	Check the pipe water flow and water pump
Waterway Anti-freezing Prot.	E05	Water temp.or ambient temp. is too low	
Inlet and outlet temp. too big	E06	Water flow is not enough and low differential pressure	Check the pipe water flow and whether water system is jammed or not
Anti-freezing Prot.	E07	Water flow is not enough	Check the pipe water flow and whether water system is jammed or not
Primary Anti-freezing Prot.	E19	The ambient temp. Is low	
Secondary Anti-freezing Prot.	E29	The ambient temp. Is low	
Comp. Overcurrent Prot.	E051	The compressor is overload	Check whether the system of the compressor running normally
Communication Fault	E08	Communicat ion failure between wire controller and mainboard	Check the wire connection between remote wire controller and main board
Communication Fault (speed control module)	E081	Speed control module and main board communication fail	Check the communication connection
Low AT Protection	TP	Ambient temp is too low	
EC fan feedback Fault	F051	There is something wrong with fan motor and fan motor stops running	Check whether fan motor is broken or locked or not
Fan Motor1 Fault	F031	Motor is in locked-rotor state The wire connection between DC-fan motor module and fan motor is in bad contact	Change a new fan motor Check the wire connection and make sure they are in good contact
Fan Motor2 Fault	F032	Motor is in locked-rotor state The wire connection between DC-fan motor module and fan motor is in bad contact	1.Change a new fan motor 2.Check the wire connection and make sure they are in good contact

4.3.2 Frequency conversion board fault table:

Protection/fault	Fault	Reason	Elimination methods
Drv1 MOP alarm	F01	MOP drive alarm	Recoveryafter the 150s
Inverter offline	F02	Frequency conversion board and main board communication failure	Checkthe communicationconnection
IPM protection	F03	IPM modular protection	Recoveryafter the 150s
Comp. Driver Failure	F04	Lack of phase, step or drive hardware damag	Checkthe measuringvoltage check requencyconversion board hardware
DC Fan Fault	F05	Motor current feedback open circuit or short circuit	Checkwhether currentreturn wires connectedmotor
IPM Overcurrent	F06	IPM Input current is large	Checkand adjustthe current measurement
Inv. DC Overvoltage	F07	DC bus voltage>Dc bus over-voltage protection value	Checkthe input voltagemeasurement
Inv. DC Lessvoltage	F08	DC bus voltage <dc bus="" over-voltage="" protection="" td="" value<=""><td>Checkthe input voltagemeasurement</td></dc>	Checkthe input voltagemeasurement
Inv. Input Lessvolt.	F09	The input voltage is low, causing the inputcurrent is high	Checkthe input voltagemeasurement
Inv. Input Overvolt.	F10	The input voltage is too high, more than outage protection current RMS	Checkthe input voltagemeasurement
Inv. Sampling Volt.	F11	The input voltage sampling fault	Checkand adjustthe current measurement
Comm. Err DSP-PFC	F12	DSP and PFC connect fault	Checkthe communicationconnection
Input Over Cur.	F26	The equipment load is too large	
PFC fault	F27	The PFC circuit protection	ck the PFC switch tube short circuit not
IPM Over heating	F15	The IPM module is overheat	Checkand adjustthe current measurement
Weak Magnetic Warn	F16	Compressor magnetic force is not enough	
Inv. Input OutPhase	F17	The input voltage lost phase	Checkand measurethe voltage adjustment
IPM Sampling Cur.	F18	IPM sampling electricity is fault	Checkand adjustthe current measurement
Inv. Temp. Probe Fail	F19	Sensor is short circuit or open circuit	Inspectand replacethe sensor
Inverter Overheating	F20	The transducer is overheat	Checkand adjustthe current measurement
Inv. Overheating Warn	F22	Transducer temperature is too high	Checkand adjustthe current measurement
Comp. OverCur. Warn	F23	Compressor electricity is large	The compressorover-current protection
Input Over Cur. Warn	F24	Input current is too large	Checkand adjustthe current measurement
EEPROM Error Warn	F25	MCU error	Checkwhether the chip is damaged Replacethe chip
V15V over/undervoltage fault	F28	The V15V is overload or undervoltage	Check the V15V input voltage in range 13.5v~16.5v or not

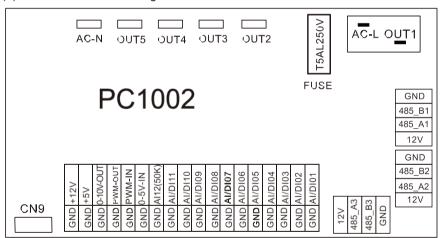
5. MAINTENANCE AND INSPECTION

(2) Parameter list


Meaning	Default	Remarks
Refrigeration target temperature set point	27ഒ	Ajustable
Heating the target temperature set point	27ഒ	Ajustable
Automatic target temerature set point	27ഒ	Ajustable

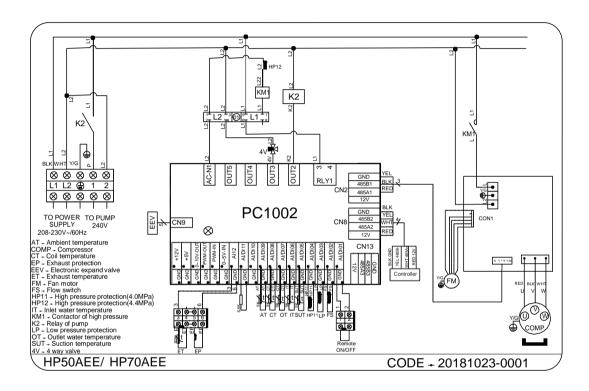
5. Maintenance and inspection

- Check the water supply device and the release often. You should avoid the condition of no water or
 air entering into system, as this will influence unit's performance and reliability. You should clear the
 pool/spa filter regularly to avoid damage to the unit as a result of the dirty of clogged filter.
- The area around the unit should be dry, clean and well ventilated. Clean the side heating exchanger regularly to maintain good heat exchange as conserve energy.
- The operation pressure of the refrigerant system should only be serviced by a certified technician.
- Check the power supply and cable connection often,. Should the unit begin to operate abnormally, switch it off and contact the qualified technician.
- Discharge all water in the water pump and water system ,so that freezing of the water in the pump or water system does not occur. You should discharge the water at the bottom of water pump if the unit will not be used for an extended period of time. You should check the unit thoroughly and fill the system with water fully before using it for the first time after a prolonged period of no usage.

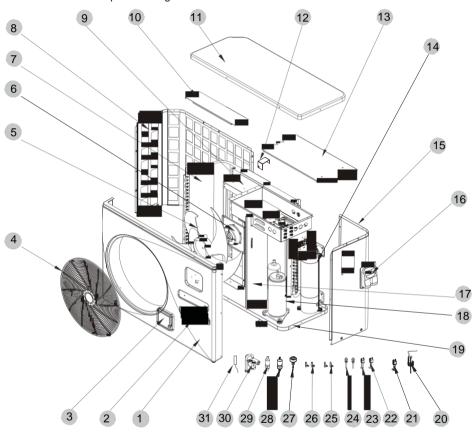

6.1 Connection of PCB illustration

(1) Wire control interface diagram and definition

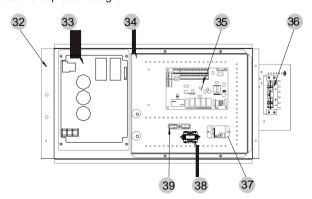
Sign	Meaning
V	12V (power +)
R	No use
Т	No use
А	485A
В	485B
G	GND(power-)


(2) Controller interface diagram and definition

Connections explanation 9


No.	Symbol	Meaning
1	OUT1	Compressor (output 220-230VAC)
2	OUT2	Water pump (output 220-230VAC)
3	OUT3	4-way valve (output 220-230VAC)
4	OUT4	High speed of fan (output 220-230VAC)
5	OUT5	Low speed of fan (output 220-230VAC)
6	AC-L	Live wire (input 220-230VAC)
7	AC-N	Neutral wire (input 220-230VAC)
8	AI/DI01	Emergency switch (input)
9	AI/DI02	Water flow switch (input)
10	AI/DI03	System low pressure (input)
11	AI/DI04	System high pressure (input)
12	AI/DI05	System suction temperature (input)
13	AI/DI06	Water input temperature (input)
14	AI/DI07	Water output temperature (input)
15	AI/DI08	System fan coil temperature (input)
16	AI/DI09	Ambient temperature (input)
17	AI/DI10	Mode switch / coil 2 temperature (input)
18	AI/DI11	Master-slave machine switch / Antifreeze temperature (input)
19	AI12(50K)	System Exhaust temperature (input)
20	0_5V_IN	Compressor current detection/Pressure sensor(input)
21	PWM_IN	Master-slave machine switch / Feedback signal of EC fan (input)
22	PWM_OUT	AC fan control (output)
23	0_10V_OUT	EC fan control (output)
24	+5V	+5V (output)
25	+12V	+12V (output)
26	GND	
27	485_B1	
28	485_A1	Frequency conversion board communications
29	12V	
30	GND	
31	485_B2	Color line controller communication
32	485_A2	
33	12V	
34	Cn9	Electronic expansion valve
35	GND	
36	485_B3	The port for centralized control
37	485_A3	
38	12V	
39	FUSE	T5AL250V

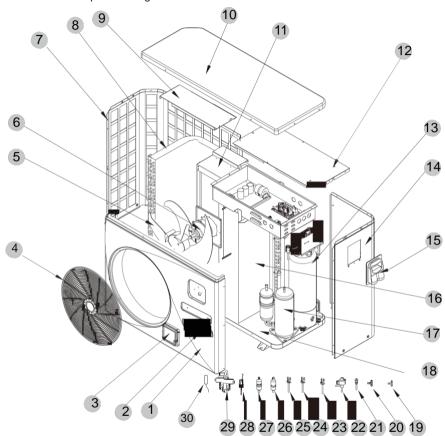
6.2 Wiring Diagram:



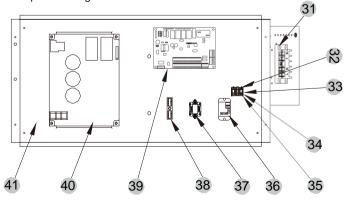
6.3 Exploded View - HP50AEE

(1) Complete machine structure explosion diagram

(2) Electrical control structure explosion diagram



(3) Spare Parts List


No.	Code	Name	Specifications	Qty
1	301090-20120001	Front box	ABS	1
2	20000-230596	Trademark	250X55	1
3	72200070	CP203	82300038 + 82400012	1
4	20000-220369	Fan net	ABS	1
5	20000-270004	Axial fan blade	Z500-145	1
6	20000-330132	DC	ZWS75-A	1
7	32012-120166	Finned heat exchanger	680x290x700x¢7x1.5 2.0	1
8	301070-20080006	Back network	Galvanized sheet	1
9	32012-210570	Motor bracket	black 9005	1
10	32012-210493	Top support plate	ABS black fine lines	1
11	32012-210489	Top cover	ABS	1
12	32008-210167	Condenser splint	Galvanized sheet 1.0 black 9005	1
13	32012-210494	Electrical box cover	Galvanized sheet 1.2 black 9005	1
14	301060-20120002	Titanium tube heat exchanger	¢9.52x9m ¢110 thread	1
15	301070-20120021	Right side panel	Galvanized sheet	1
16	32009-220029	Junction box	B ABS black	1
17	32009-220029	Middle partition	Galvanized sheet 1.0 black 9005k	1
18	20000-110436	compressor	5RD160ZAA21	1
19	301070-20120022	Chassis assembly	Galvanized sheet	1
20	20000-360005	Flow switch	PSL-1 3/4	1
21	20000-360157	Pressure Switch	0.30MPa/0.15MPa ±0.05 normally open	1
22	2001-3605	Pressure Switch	3.2MPa/4.4MPa ±0.15 normally closed	1
23	20000-360059	Pressure Switch	3.2MPa/4.0MPa ±0.15 normally closed	1
24	20000-360157	Needle valve	40mm 1/2" T0305-10	2
25	2000-1460	Three links	¢6.5-2x¢6.5(T)x0.75 T2M	2
26	304030-00000002	Three links	¢9.52-2x¢6.35(T)x1.0	2
27	20000-140449	Electronic expansion valve	DPF(TS1)1.8C-03	1
28	2004-1444	Filter (R410A)	¢9.7-¢9.7 (¢28) T2Y2	1
29	20000-140618	Filter (R410A)	¢9.7-¢6.5(¢28) T2Y2	1
30	20000-140484	Four - way valve	DSF-9-R410A	1
31	2000-3242	Sensor	150-502-98674(5K) 800mm	5
32	80701652	Electrical box assembly	Black 9005	1
33	20000-310170	Variable frequancy drive	SA.FNB75GW.1	1
34	32012-210497	Electrical box line	Galvanized sheet	1
35	95005-310569	PC1002 Controller	20000-430177+35005-310569	1
36	20000-390231	5-position terminal block	UTD-32/5P(L1、L2、PE、1、2)	1
37	20000-360297	Relay	HATF903AS30AC220 AC220V 30A	1
38	20000-360006	Contactor	HCC-1NU04AA	1
39	2000-3909	2-position terminal block	RS9211(450V~ 4mm2)	1

6.3 Exploded View - HP70AEE

(1) Complete machine structure explosion diagram

(2) Electrical control structure explosion diagram

(3) Spare Parts List

No.	Code	Name	Specifications	Qty
1	301090-00000004	Front box	ABS	1
2	20000-230596	Trademark	250X55	1
3	72200070	CP203	82300038 + 82400012	1
4	20000-220369	Fan net	ABS	1
5	20000-270004	Axial fan blade	Z500-145	1
6	20000-330132	DC	ZWS75-A	1
7	80701595	Back network	Galvanized sheet	1
8	301060-20180001	Finned heat exchanger	714x353x800x¢7x2 2.0	1
9	32009-210663	Support plate	Galvanized sheet 1.5 black 9005	1
10	80900216	Top cover	ABS black fine lines	1
11	32009-210662	Motor bracket assembly	Black 9005	1
12	32009-210658	Electrical cover	Galvanized sheet 1.0 black 9005	1
13	80600265	Titanium tube heat exchanger	¢12.7x7m+¢9.52x5m ¢160 thread	1
14	80701596	Right side panel	Galvanized sheet	1
15	32009-220029	Junction box	B ABS black	1
16	32009-210664	Middle partition	Galvanized sheet 1.0 black 9005	1
17	20000-110217	compressor	TNB220FLHMC	1
18	80701594	Chassis assembly	Galvanized sheet	1
19	2000-1460	Three links	¢6.5-2x¢6.5(T)x0.75 T2M	1
20	304030-00000002	Three links	40mm 1/2" T0305-10	1
21	20000-140150	Needle valve	¢9.52-2x¢6.35(T)x1.0	1
22	20000-140572	Electronic expansion valve	DPF(B)2.0C-008	1
23	20000-360157	Pressure Switch	0.30MPa/0.15MPa ±0.05 normally open	1
24	2001-3605	Pressure Switch	3.2MPa/4.4MPa ±0.15 normally closed	1
25	20000-360059	Pressure Switch	3.2MPa/4.0MPa ±0.15 normally closed	1
26	2004-1444	Filter (R410A)	¢9.7-¢9.7(¢28) T2Y2	1
27	20000-140618	Filter (R410A)	¢9.7-¢6.5(¢28) T2Y2	1
28	20000-360005	Flow switch	PSL-1 3/4	1
29	20000-140485	Four-way valve	DSF-11E-R410A	1
30	2000-3242	Sensor	150-502-98674(5K) 800mm	5
31	20000-390231	5-position terminal block	UTD-32/5P(L1、L2、PE、1、2)	1
32	20000-390049	Terminals	MSB 2.5-F	1
33	20000-390048	Terminals	MSDB 2.5-M	1
34	20000-390046	Terminals	MSB 2.5-M	1
35	20000-390047	Terminal block	D-MSB 1.5-F	1
36	20000-360297	Relay	HATF903AS30AC220 AC220V 30A	1
37	20000-360006	Contactor	HCC-1NU04AA	1
38	2000-3909	2-position terminal block	RS9211(450V~ 4mm2)	1
39	95005-310569	PC1002 Controller	20000-430177+35005-310569	1
40	20000-310170	Variable frequency drive	SA.FNB75GW.1	1
41	32009-210651	Electrical box assembly	Black 9005	1

POMPE À CHALEUR POUR PISCINE

Manuel d'installation et d'instruction

Modèles HP50AEE HP70AEE

Hayward Pool Products Canada, Inc. 2880 Plymouth Dr., Oakville, ON L6H 5R4 Haywardpool.ca / 1.888.238.7665

TABLE DES MATIÈRES

1. Préface	1
2 Spécifications	2
2.1 Données de performance de la pompe à chaleur pour piscine	2
2.2 Dimensions de la pompe à chaleur pour piscine	3
3 Installation et raccordement	4
3.1 Installation du système	4
3.2 Emplacement des pompes à chaleur pour piscines	5
3.3 À quelle distance de votre piscine ?	5
3.4 Plomberie des pompes à chaleur pour piscines	6
3.5 Câblage électrique des pompes à chaleur pour piscines	7
3.6 Démarrage initial de l'appareil	7
4 Utilisation et fonctionnement 4.1 Introduction à l'interface de la commande avec fil de l'écran	9
couleur	9
4.2 Introduction au fonctionnement de la commande avec fil de	
l'écran couleur	11
4.3 Liste des paramètres et tableau de ventilation	15
5 Maintenance et inspection	20
6. Annexe	21
6.1 Raccordement du circuit imprimé : Illustration	21
6.2 Schéma de câblage	23
6.3 Vue éclatée et liste de pièces de rechange	24
6.4 Garantie	30

1. PRÉFACE

- Cet appareil a été fabriqué selon des normes de production strictes afin de fournir à nos clients la qualité, la fiabilité et la polyvalence. Ce manuel contient toutes les informations nécessaires sur l'installation, le rodage, le déchargement et la maintenance. Veuillez lire attentivement ce manuel avant d'ouvrir l'appareil ou effectuer sa maintenance. Le fabriquant de ce produit ne pourra pas être tenu responsable si une personne est blessée ou si l'appareil est endommagé suite à une installation, un rodage inapproprié, ou une maintenance inutile. Veuillez suivre scrupuleusement les instructions de ce manuel à chaque étape. L'appareil doit être installé par un personnel qualifié.
- L'appareil ne peut être réparée que par un centre d'installation, un personnel qualifié ou un revendeur agréé.
- La maintenance et l'utilisation doivent être effectuées selon la durée et la fréquence recommandées, tel que spécifié dans ce manuel.
- Veuillez utiliser uniquement des pièces de rechange standard authentiques.
 La garantie sera annulée si ces recommandations ne sont pas suivies.
- La pompe à chaleur pour piscine chauffe l'eau de la piscine et maintient sa température constante.
 Pour les appareils à unités séparées, l'unité intérieure peut être discrètement cachée ou semicachée pour convenir à une maison luxueuse.

Notre pompe à chaleur présente les caractéristiques suivantes :

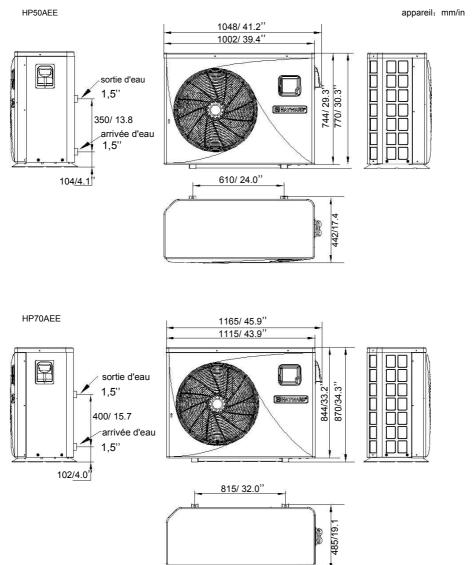
1 Durable

L'échangeur de chaleur est composé de tuyaux en PVC et titane qui peuvent résister à une exposition prolongée à l'eau de piscine.

- 2 Installation facile
 - L'appareil peut être installé à l'extérieur ou à l'intérieur.
- 3 Fonctionnement silencieux
 - L'appareil est composé d'un compresseur rotatif/scroll performant et d'un moteur de ventilateur silencieux, ce qui garantit son fonctionnement sans bruit.
- 4 Contrôle avancé
 - L'appareil comprend une commande micro-électronique permettant de définir tous les paramètres de fonctionnement. L'état de fonctionnement peut être affiché sur la commande avec fil LCD. La télécommande peut être choisie comme option pour l'avenir.

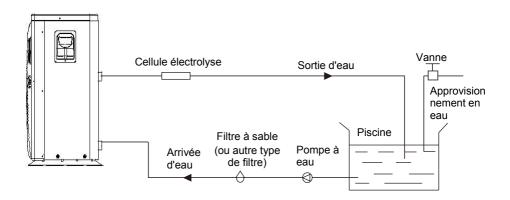
2. SPÉCIFICATION

2.1 Données de performance de la pompe à chaleur pour piscine


• RÉFRIGÉRANT : R410A

UNITÉ	Modèle	HP50AEE	HP70AEE
Puissance thermique nominale	kW	14.7	18.9
	Btu/h	50000	65000
Plage	kW	2.8-14.7	3.4-18.9
	Btu/h	9500-50000	11600-65000
Puissance thermique nominale d'entrée	kW	2.68	3.86
Plage	kW	0.2-2.68	0.31-3.86
Courant nominal d'entrée	Α	12.0	16.9
Plage	Α	1.1-12.0	1.5-16.9
Alimentation électrique	V/Hz	208-230 V~/60 Hz	208-230 V~/60 Hz
Quantité de compresseur		1	1
Compresseur		rotatif	rotatif
Quantité de ventilateur		1	1
Puissance d'entrée du ventilateur	w	100	100
Vitesse de rotation du ventilateur	tr/min	500-650	300-750
Direction du ventilateur		horizontal	horizontal
Bruit	dB(A)	43-53	42-57
Raccordement d'eau	pouce	1,5"	1,5"
Volume d'écoulement d'eau	m₃/h /gpm	4.1/18.5	6.2/ 27.3
Chute de pression d'eau (max)	kPa/psi	4.3/ 0.62	4.9/ 0.71
Dimensions nettes de l'appareil (L/W/H)	mm/po	1048 × 442 × 770 / 41,2 × 17,4 × 30,3	1165 × 485 × 870 / 45,9 ×19,1 × 34,3
Dimensions de l'appareil à l'expédition (L/W/H)	mm/po	1130 × 460 × 780 / 44,5 × 18,1 × 30,7	1210 × 510 × 880 / 47,6 × 20,1 × 34,6
Poids net	kg	voir la plaque signalétique	
Poids à l'expédition	kg	voir l'étiquette du colis	

Chauffage nominal : *Température de l'air extérieur : température de 27°C/24,3°C, Entrée l'eau : 26,7 Pendant le chauffage : Température ambiante : -5°C~43°C.


2. SPÉCIFICATION

2.2 Dimensions de la pompe à chaleur pour piscine

3. INSTALLATION ET RACCORDEMENT

3.1 Illustration de l'installation

Éléments d'installation :

L'usine fournit uniquement l'unité principale et l'unité des eaux. Les autres éléments de l'illustration sont des pièces de rechange nécessaires pour le système hydraulique qui sont fournies par les utilisateurs ou l'installateur.

Attention:

Veuillez suivre les étapes suivantes lors de la première utilisation

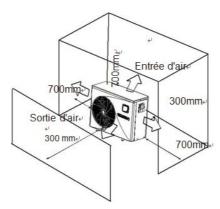
- 1. Ouvrez la vanne et chargez de l'eau.
- 2. Assurez-vous que la pompe et le tuyau d'arrivée d'eau ont été remplis d'eau.
- 3. Fermez la vanne et démarrez l'appareil.

ATTENTION : Il est nécessaire que le tuyau d'arrivée d'eau soit plus haut que la surface de la piscine.

Le diagramme schématique sert uniquement de référence. Veuillez vérifier l'étiquette d'arrivée/sortie d'eau sur la pompe à chaleur lors de l'installation de la plomberie.

3. INSTALLATION ET RACCORDEMENT

3.2 Emplacement des pompes à chaleur pour piscines


L'appareil fonctionnera correctement dans n'importe quel endroit extérieur à condition que les trois facteurs suivants soient respectés :

1. Air frais - 2. Électricité - 3. Tuyauterie de filtre de piscine

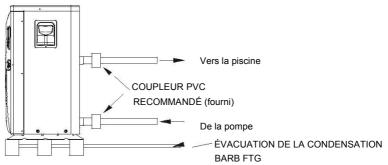
L'appareil peut être installé pratiquement n'importe où à l'extérieur. Veuillez consulter le fournisseur pour les piscines intérieures. Contrairement à un appareil de chauffage au gaz, il n'a pas de problème de tirage ou de veilleuse dans une zone ventée.

NE placez JAMAIS l'appareil dans un endroit fermé où le volume d'air est limité, où l'air rejeté par l'appareil retournera vers ce dernier.

NE placez JAMAIS l'appareil sur des arbustes pouvant obstruer l'entrée d'air. Ces emplacements privent l'appareil d'une source continue d'air frais, ce qui réduit sa performance et peut l'empêcher de fournir la chaleur de manière adéquate.

3. 3 À quelle distance de votre piscine ?

3. INSTALLATION ET RACCORDEMENT


3.4 Plomberie des pompes à chaleur pour piscines

L'échangeur de chaleur en titane à débit nominal exclusif des pompes à chaleur pour piscines ne nécessite aucune installation de plomberie particulière, sauf une dérivation (veuillez définir le débit en fonction de la plaque signalétique). La chute de pression d'eau est inférieure à 10 kPa pour le débit maximal. Puisqu'il n'existe ni chaleur résiduelle ni température de flamme, l'appareil n'a pas besoin de tuyauterie en cuivre pour le dissipateur thermique. Un tuyau en PVC peut être installé directement dans l'appareil.

Emplacement : Raccordez l'appareil à la conduite de refoulement (retour) de la pompe de piscine en aval de toutes les pompes de filtration et de la piscine et en amont de tout chlorateur, ozonateur ou pompe de produits chimiques.

Les modèles standard ont des raccords à colle adaptés aux tuyaux en PVC de 32 ou 50 mm pour le raccordement aux tuyauteries de filtration de la piscine ou du spa. En utilisant un 50 NB à 40 NB, vous pouvez plomber 40 NB

Examinez sérieusement la possibilité d'ajouter un raccord rapide à l'entrée et à la sortie de l'appareil pour permettre à celui-ci de se vider facilement pendant l'hiver et d'être facilement accessible en cas d'entretien.

Condensation : Puisque la pompe à chaleur refroidit l'air à environ 4 à 5 °C , de l'eau peut se condenser sur les ailettes de l'évaporateur en forme de fer à cheval. Si l'humidité relative est très élevée, cela peut atteindre plusieurs litres par heure. L'eau coulera par les ailettes dans le plateau et s'écoulera par le raccord d'évacuation de la condensation en plastique barbelé situé sur le côté du plateau. Ce raccord est conçu pour s'adapter aux tubes en vinyle transparent de 20 mm qui peuvent être poussés à la main et évacués vers un drain approprié. Il est facile de confondre la condensation avec une fuite d'eau à l'intérieur de l'appareil.

NB: L'un des moyens rapides de vérifier si l'eau est de la condensation consiste à éteindre l'appareil et à laisser la pompe de la piscine en marche. Si l'eau cesse de couler du plateau, c'est de la condensation. L'UNE DES MÉTHODES PLUS RAPIDES EST de TESTER LE CHLORE DE L'EAU DE VIDANGE. S'il n'y a pas de chlore présent, c'est la condensation.

3. INSTALLATION ET RACCORDEMENT

3.5 Câblage électrique des pompes à chaleur pour piscines

REMARQUE : Quoique l'échangeur de chaleur de l'appareil soit isolé électriquement du reste de l'appareil, il empêche tout simplement la circulation d'électricité entre l'eau et la piscine. La mise à la terre de l'appareil est toujours nécessaire pour vous protéger des courts-circuits à l'intérieur de ce dernier. La liaison est également requise.

L'appareil est doté d'une boîte de distribution distincte moulée avec un raccord de gaine électrique standard déjà en place. Retirez simplement les vis et le panneau avant, mettez vos conduites d'alimentation sous tension à travers le raccord de gaine et raccordez les câbles d'alimentation électrique aux trois connexions déjà existantes dans la boîte de distribution (quatre connexions pour le triphasée). Pour terminer le raccordement électrique, connectez la pompe à chaleur à l'aide d'un câble électrique, un câble UF ou autre moyen approprié indiqué (tel que permis par les autorités locales en matière d'électricité) à un circuit de dérivation d'alimentation secteur équipé du disjoncteur, du sectionneur ou d'une protection par fusible temporisé approprié

Débranchement : un moyen de débranchement tel qu'un disjoncteur, interrupteur à fusible ou sans fusible doit être placé à un endroit facilement visible et accessible de l'appareil. Ceci est une pratique courante sur les climatiseurs et les pompes à chaleur commerciaux et résidentiels. Cela empêche une alimentation à distance par des équipements sans surveillance et permet d'éteindre l'alimentation de l'appareil pendant sa maintenance.

3.6 Démarrage initial de l'appareil

REMARQUE : pour que l'appareil chauffe la piscine ou le spa, la pompe de filtration doit fonctionner pour faire circuler l'eau dans l'échangeur de chaleur.

Procédure de démarrage : une fois l'installation terminée, procédez comme suit :

- 1. Allumez votre pompe de filtration. Vérifiez les fuites d'eau et vérifiez le débit qui entre et sort de la piscine.
- 2. Mettez l'appareil sous tension, puis appuyez sur la touche MARCHE/ARRÊT de la commande avec fil. Il devrait démarrer dans quelques secondes.
- Après avoir fonctionné quelques minutes, assurez-vous que l'air sortant du haut (côté) de l'appareil est plus froid (entre 5 et 10℃)
- 4. Lorsque l'appareil est en marche, éteignez la pompe de filtration. L'appareil devrait également s'éteindre automatiquement,
- 5. Laissez l'appareil et la pompe de piscine fonctionner 24 heures par jour jusqu'à ce que la température de l'eau de piscine souhaitée soit atteinte. Lorsque la température d'entrée d'eau atteint le réglage, l'appareil s'éteint simplement. Désormais, l'appareil redémarrera automatiquement (tant que votre pompe de piscine fonctionne) lorsque la température de la piscine chute de plus de 2°C en dessous de la température définie.

Temporisation : l'unité est équipée d'un délai de redémarrage à l'état solide intégré de 3 minutes prévu pour protéger les composants du circuit de commande, éliminer les cycles de redémarrage et le brouillage des contacteurs. Cette temporisation redémarre automatiquement l'appareil environ 3 minutes après chaqu'interruption du circuit de commande. Même une brève interruption de l'alimentation activera le délai de redémarrage à l'état solide de 3 minutes et empêchera l'appareil de démarrer jusqu'à ce que le compte à rebours de 5 minutes soit terminé. Les interruptions de courant pendant la période de délai n'auront aucun effet sur le compte à rebours de 3 minutes.

4.1. Introduction à l'interface de la commande avec fil de l'écran couleur

4.1.1 Interface principale

4.1.2 Interface de fonction

4.1.2 Description du bouton et d'affichage

NO.	Nom	Description
I	Heure	Afficher l'heure du système
II	Réglage de température	Afficher la température cible
III	Eau de sortie	Afficher la température de l'eau de sortie
IV	Eau d'entrée	Afficher la température de l'eau d'entrée
1)	MARCHE/ARRÊT ou Retour	Appuyez dessus pour commander la fonction MARCHE/ARRÊT de l'appareil, ou revenir à l'interface précédente
2	lcône de dégivrage	L'icône s'affichera lorsque l'appareil fonctionne en mode Dégivrage.
3	Mode	L'icône affichera le mode de fonctionnement (chauffage / refroidissement / auto)
4	Icône du compresseur	L'icône s'affichera lorsque le compresseur fonctionne
(3)	lcône de verrouillage	L'icône s'affichera lorsque le contrôleur de fonctionnement est verrouillé.
6	Icône de défaut	L'icône s'affichera en cas de défaillance de l'appareil
7	Interface actuelle	Glissez vers la gauche ou la droite pour changer l'affichage de l'interface
8	Mode	Cliquez pour entrer en mode réglage
9	Réglage de la température	Cliquez pour définir la température cible du mode actuel
0	Mode silencieux	Cliquez pour changer le mode silencieux
0	Timing silencieux	Cliquez pour définir la minuterie du fonctionnement silencieux
(1)	Réglage de l'heure	Cliquez pour entrer le réglage de l'heure du système
(3)	Minuterie	Cliquez pour entrer le réglage du timing de la fonction MARCHE/ARRÊT de l'appareil
(1)	Défaut	Cliquez pour consulter l'historique des erreurs
(3)	Paramètre	Cliquez pour entrer dans l'interface de paramètre système

- 4.2. Introduction au fonctionnement de la commande avec fil de l'écran couleur
- 4.2.1 Introduction au fonctionnement de la commande avec fil de l'écran couleur

Dans l'interface principale :

- 1) En état d'arrêt, appuyez sur le bouton MARCHE/ARRÊT pendant 0,5 seconde pour démarrer l'appareil.
- En état de démarrage, appuyez sur le bouton MARCHE/ARRÊT pendant 0,5 seconde pour éteindre l'appareil.

4.2.2 Interface de sélection de fonction

Dans l'interface principale, glissez vers la gauche ou la droite pour sélectionner la fonction.

Interface principale

Deuxième interface

Troisième interface

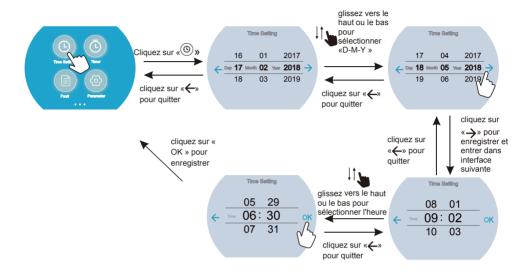
4.2.3 Interrupteur de mode

Dans la deuxième interface de fonction, cliquez sur l'icône Mode pour accéder à l'interface de configuration du mode.

Glissez le curseur vers le haut et le bas pour sélectionner le mode (Refroidissement-Chauffage-Auto), cliquez sur « OK » pour enregistrer le réglage et revenir à l'interface précédente. Cliquez sur le bouton Précédent « O » ou « ← » pour quitter les paramètres.

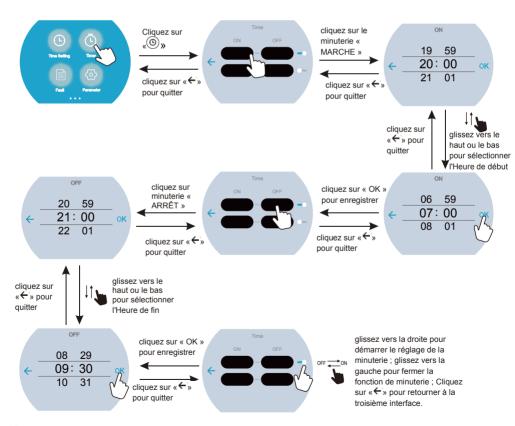
Remarque : lorsque l'appareil est conçu pour un mode de refroidissement unique ou un mode de chauffage unique, le mode ne peut pas être changé

4.2.4 Réglage de la température cible


Dans la deuxième interface de fonction, cliquez sur « ⇒ » pour entrer dans l'interface de réglage de température. Glissez le curseur vers le haut ou le bas pour sélectionner la température cible, cliquez sur « OK » pour enregistrer le réglage et revenir à l'interface précédente. Cliquez sur le bouton Précédent « ○ » ou « ← » pour quitter les paramètres.

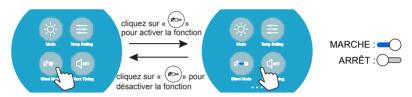
4.2.5 Réglage de l'heure du système

Glissez le curseur vers le haut ou le bas pour sélectionner la DATE, cliquez sur « → » pour enregistrer et accéder à l'interface de réglage de l'heure. Cliquez sur « ← » pour annuler et revenir à l'interface précédente.

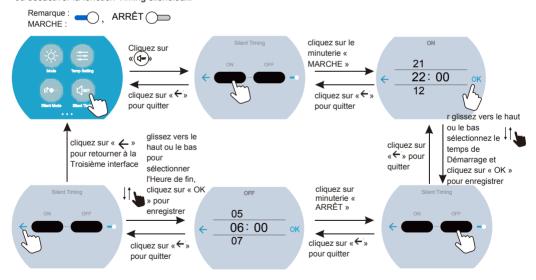

Dans l'interface de réglage de l'heure, glissez le curseur vers le haut ou le bas pour sélectionner HEURE, cliquez sur « OK » pour enregistrer et revenir à la troisième interface de fonction. Cliquez sur « \leftarrow » pour revenir à l'interface précédente.

4.2.6 Paramètres de timing

Dans la troisième interface de fonction, cliquez sur « pour entrer dans l'interface de réglage de l'heure, cliquez sur la valeur de « MARCHE » pour entrer dans l'interface de sélection de l'heure de début, glissez le curseur vers le haut ou le bas pour ajuster la valeur. Cliquez sur « OK » pour enregistrer (cliquez sur « Netour arrière) ; cliquez sur la valeur « ARRÊT » pour entrer dans l'interface de sélection de l'heure de fin, glissez le curseur vers le haut ou le bas pour ajuster la valeur, cliquez sur « OK » pour enregistrer (cliquez sur « » Retour arrière).


Enfin, faites glisser le bouton droit vers la droite pour activer les paramètres de minuterie ou vers la gauche pour désactiver les paramètres de minuterie ; cliquez sur « ← » pour revenir à la troisième interface de fonction.

4.2.7 Mode silencieux et timing silencieux


(1) Mode silencieux

Dans la deuxième interface de fonction, cliquez sur « pour activer le mode silencieux. L'icône indique « silencieux peut être désactivée.

(2) Timing silencieux

Dans la deuxième interface de fonction, cliquez sur « (d=) » pour accéder à l'interface Timing silencieux, cliquez sur la valeur pour régler l'heure de début l ou l'heure de fin, faites glisser le bouton rond droit pour activer ou désactiver la fonction Timing silencieux.

Note:Start and end time setting value must be among the range of 00:00-23:00, and setting value can be precise to hour digit.

Remarque : la valeur de réglage de l'heure de démarrage et de fin doit être comprise dans la plage 00:00-23:00 et la valeur de réglage peut être précise en ce qui concerne le chiffre de l'heure.

4.2.8 L'interface de défaut

En cas de défaut, l'icône de défaut « 🗥 » s'affichera dans l'interface principale.

Pour consulter la liste des enregistrements de défauts, glissez vers la troisième interface de fonction, cliquez sur ()» pour accéder à l'interface d'enregistrement d'historique des défauts, cliquez sur () » ou () » pour faire défiler la page vers le haut ou vers le bas. L'interface de défaut enregistrera l'heure, le code, le nom du défaut.

Cliquez sur « Suppr » pour effacer les enregistrements de défauts et appuyez sur le bouton RETOUR « O » pour revenir à la troisième interface de fonction.

4.2.8 Verrouillage du clavier

Dans l'interface principale, appuyez sur le bouton « O » pendant 5 secondes. L'écran se verrouille. Appuyez à nouveau sur le bouton « O » pendant 5 secondes pour le déverrouiller.

4.3 Liste des paramètres et tableau de ventilation

4.3.1 Tableau de défauts de la commande électronique

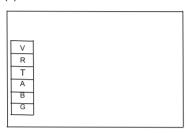
Protect/fault	Fault display	Reason	Elimination methods
Inlet Temp. Sensor Fault	P01	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Outlet Temp. Sensor Fault	P02	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Amibent Temp. Sensor Fault	P04	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Coil 1 Temp. Sensor Fault	P05	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Coil 2 Temp. Sensor Fault	P15	The temp. Sensor is broken ar shart circuit	Check or change the temp. Sensor
Suction Temp. Sensor Fault	P07	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Discharge Temp. Sensor Fault	P081	The temp. Sensor is broken or short circuit	Check or change the temp. Sensor
Exhaust Air over Temp Prot.	P082	The compressor is overload	Check whether the system of the compressor running normally
Antifreeze Temp. Sensor Fault	P09	Antifreeze temp sensor is broken or short circuited	check and replace this temp sensor
Pressure sensor Fault	PP	The pressure Sensor is broken	Check or change the pressure Sensor or pressure
High Pressure Prot.	E01	The high-preesure switch is broken	Check the pressure switch and cold circuit
Low Pressure Prot.	E02	Low pressure1 protection	Check the pressure switch and cold circuit
Flow Switch Prot.	E03	No water/little water in water system	Check the pipe water flow and water pump
Waterway Anti-freezing Prot	E05	Water temp.or ambient temp. is too low	
Inlet and outlet temp. too big	E06	Water flow is not enough and low differential pressure	Check the pipe water flow and whether water system is jammed or not
Anti-freezing Prot.	E07	Water flow is not enough	Check the pipe water flow and whether water system is jammed or not
Primary Anti-freezing Prot.	E19	The ambient temp. Is low	
Secondary Anti-freezing Prot	E29	The ambient temp. Is low	
Comp. Overcurrent Prot.	E051	The compressor is overload	Check whether the system of the compressor running normally
Communication Fault	E08	Communication failure between wire controller and mainboard	Check the wire connection between remote wire controller and main board
Communication Fault (speed control module)	E081	Speed control module and main board communication fail	Check the communication connection
Low AT Protection	TP	Ambient temp is too low	
EC fan feedback Fault	F051	There is something wrong with fan motor and fan motor stops running	Check whether fan motor is broken or locked or not
Fan Motor1 Fault	F031	Motor is in locked-rotor state The wire connection between DC-fan motor module and fan motor is in bad contact	Change a new fan motor Check the wire connection and make sure they are in good contact
Fan Motor2 Fault	F032	Motor is in locked-rotor state The wire connection between DC-fan motor module and fan motor is in bad contact	Change a new fan motor Check the wire connection and make sure they are in good contact

4.3.2 Tableau des défauts de la carte de conversion de fréquence :

Protection / défaut	Défaut	Raison	Méthodes d'élimination
Alarme Drv1 MOP	F01	Alarme de conduit MOP	Récupération après 150s
Onduleur hors ligne	F02	Carte de conversion de fréquence et principal défaut de communication de la carte	Vérifiez la connexion de communication
Protection de l'IPM	F03	Protection modulaire d'IPM	Récupération après 150s
Défaut de conducteur Comp.	F04	Pas de dommage sur le matériel de phase, d'étape oud'entraînement	Vérifiez la tension de mesure Vérifiez le matériel de la carte de conversion des fréquences
Défaut du ventilateur CC	F05	Circuit de retour de courant moteur ouvert ou court-circuit	Vérifiez si les fils de retour de courant sont connectés au moteur
Surintensité IPM	F06	Le courant d'entrée IPM est élevé	Vérifiez et ajustez la mesure du courant
Surtension Inv. CC	F07	Tension du bus cc > Surtension du bus cc valeur de protection	Vérifiez la mesure de la tension d'entrée
Tension CC inférieure Inv.	F08	Tension du bus cc < Surtension du bus cc valeur de protection	Vérifiez la mesure de la tension d'entrée
Tension d'entrée inférieure Inv.	F09	La tension d'entrée est basse, causant une élévation du courant d'entrée	Vérifiez la mesure de la tension d'entrée
Surtension d'entrée. Inv.	F10	La tension d'entrée est trop élevée, plus que le courant de protection contre les pannes RMS	Vérifiez la mesure de la tension d'entrée
Tension d'échantillonnage Inv.	F11	Le défaut d'échantillonnage de la tension d'entrée	Vérifiez et ajustez la mesure du courant
Comm. Err DSP-PFC	F12	Défaut de connexion DSP et PFC	Vérifiez la connexion de communication
Surtension d'entrée	F26	La charge de l'équipement est trop grande	
Défaut de PFC	F27	La protection du circuit PFC	Vérifiez s'il y a un court-circuit dans le tube de l'interrupteur PFC
Surchauffe d'IPM	F15	Le module IPM est en surchauffe	Vérifiez et ajustez la mesure du courant
Alarme magnétique faible	F 16	La force magnétique du compresseur n'est pas suffisante	
Phase d'entrée / sortie Inv.	F17	La phase de perte de tension d'entrée	Vérifiez et mesurez l'ajustement de la tension
Courbe d'échantillonnage IPM.	F18	Défaut du courant d'échantillonnage IPM	Vérifiez et ajustez la mesure du courant
Échec de la sonde de température Inv.	F19	Le capteur est en court-circuit ou ouvert	Contrôler et remplacer le capteur
Surchauffe de l'onduleur	F20	Le transducteur est en surchauffe	Vérifiez et ajustez la mesure du courant
Alarme de surchauffe Inv.	F22	La température du transducteur est trop élevée	Vérifiez et ajustez le courant du courant
Alarme de surintensité Comp.	F23	L'électricité du compresseur est élevée	Protection contre la surintensité du compresseur
Alarme de surtension d'entrée	F24	Le courant d'entrée est trop élevé	Vérifiez et ajustez la mesure du courant
Alarme d'erreur EEPROM	F25	Erreur MCU	Vérifiez si la puce est endommagée Remplacez la puce
Défaut de sur / sous-tension V15V	F28	Le V15V est en surcharge ou en sous- tension	Vérifiez si la tension d'entrée V15V est dans la plage 13,5 v~16,5 v ou non

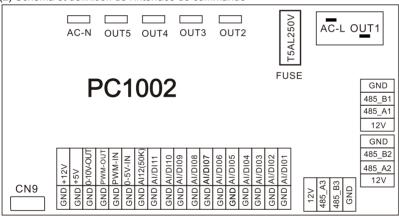
5. MAINTENANCE ET INSPECTION

(2) Liste de paramètres


Signification	Défaut	Remarques
Point de consigne de la température cible de réfrigération	27°C	Ajustable
Chauffage jusqu'au point de consigne de température cible	27°C	Ajustable
Point de consigne automatique de température cible	27°C	Ajustable

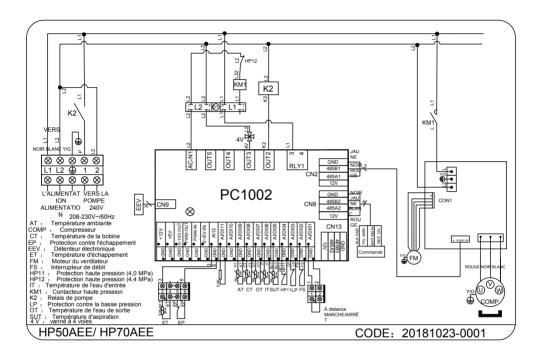
5. Maintenance et inspection

- Vérifiez le dispositif d'alimentation en eau et le relâchement de temps en temps. L'appareil doit toujours être alimenté en eau et en air, car l'absence de ces deux éléments affecterait ses performances et sa fiabilité. Vous devez nettoyer le filtre de la piscine/du spa régulièrement, car une accumulation de saleté dans le filtre ou une obstruction de celui-ci endommagerait l'appareil.
- La zone autour de l'appareil doit être sèche, propre et bien aérée. Nettoyez régulièrement l'échangeur de chaleur latéral afin de maintenir un bon échange thermique tout en économisant l'énergie.
- Seul un technicien agréé peut entretenir la pression de fonctionnement du système réfrigérant.
- Vérifiez souvent l'alimentation et le branchement des câbles. Si l'appareil commence à fonctionner de façon anormale, éteignez-le et contactez un technicien qualifié.
- Vidangez toute l'eau de la pompe à eau et du système d'eau afin d'éviter tout risque de gel de l'eau de la pompe ou du système d'eau. Vous devez vidanger l'eau située au fond de la pompe à eau si l'appareil n'est pas utilisé pendant une période prolongée. Vous devez vérifier soigneusement l'appareil et remplir le système d'eau complètement avant de l'utiliser pour la première fois après une longue période d'inutilisation.

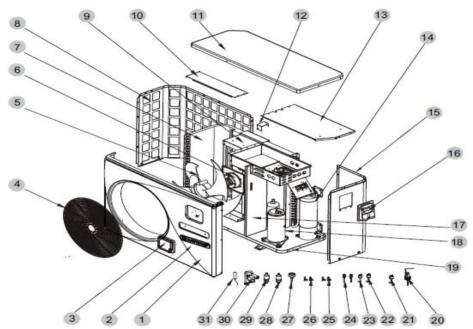

6.1 Raccordement de l'illustration du circuit imprimé

(1) Schéma et définition de l'interface de commande de fil

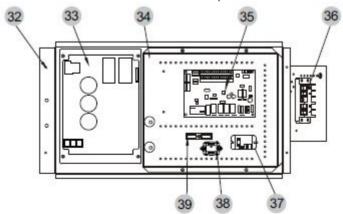
Signe	Signification
V	12V (Puissance+)
R	Aucun usage
Т	Aucun usage
Α	485A
В	485B
G	GND (puissance -)


(2) Schéma et définition de l'interface de commande

Explication des raccordements :


N°	Symbole	Signification				
1	OUT1	Compresseur (sortie 220-230 VAC)				
2	OUT2	Pompe à eau (sortie 220-230 VAC)				
3	OUT3	Vanne à 4 voies (sortie 220-230 VAC)				
4	OUT4	Vitesse élevée du ventilateur (sortie 220-230 VAC)				
5	OUT5	Basse vitesse du ventilateur (sortie 220-230 VAC				
6	AC-L	Fil sous tension (entrée 220-230 VAC				
7	AC-N	Fil neutre (entrée 220-230 VAC				
8	AI / DI01	Interrupteur d'urgence (entrée)				
9	AI / DI02	Interrupteur de débit d'eau (entrée)				
		·				
10	AI / DI03	Basse pression du système (entrée)				
11	AI / DI04	Haute pression du système (entrée)				
12	AI / DI05	Température d'aspiration du système (entrée)				
13	AI / DI06	Température d'entrée d'eau (entrée)				
14	AI / DI07	Température de sortie d'eau (entrée)				
15	AI / DI08	Température du ventilo-convecteur du système (entrée)				
16	AI / DI09	Température ambiante (entrée)				
17	AI / DI10	Commutateur de mode / température de bobine 2 (entrée)				
18	Al / DI11	Commutateur machine maître/esclave / Température antigel (entrée)				
19	Al12 (50 K)	Température d'échappement du système (entrée)				
20	0_5V_IN	Détection de courant de compresseur / capteur de pression (entrée)				
21	PWM_IN	Interrupteur machine maître/esclave / Signal de retour du ventilateur EC (entrée)				
22	PWM_OUT	Commande du ventilateur AC (sortie)				
23	0_10V_OUT	Commande du ventilateur EC (sortie)				
24	+ 5 V	+ 5 V (sortie)				
25	+ 12 V	+ 12 V (sortie)				
26	GND					
27	485_B1	Communications de la carte de conversion de fréquence				
28	485_A1					
30	12 V GND					
31	485 B2	1				
32	485 A2	Communication de la commande de ligne de couleur				
33	12 V	1				
34	Cn9	Détendeur électronique				
35	GND	92.2				
36	485_B3	1				
37	485_A3	Le port de commande centralisée				
38	12 V					
39	FUSIBLE	T5AL250V				

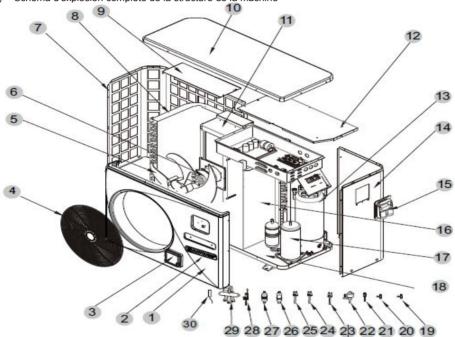
6.2 Schéma de câblage :



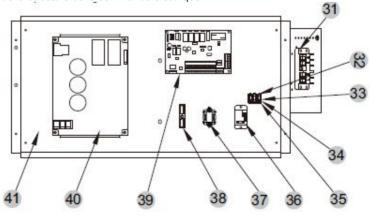
6.3 Vue éclatée - HP50AEE

(1) Schéma d'explosion complète de la structure de la machine

(2) Schéma d'explosion de la structure de la commande électrique



(3) Liste des pièces de rechange


N°	Code	Nom	Spécifications	Qté
1	301090-20120001	Boîte avant	ABS	1
2	20000-230596	Marque	250X55	1
3	72200070	CP203	82300038 + 82400012	1
4	20000-220369	Filet de ventilateur	ABS	1
				<u> </u>
5	20000-270004	Pale de ventilateur axial	Z500-145	1
6	20000-330132	DC	ZWS75-A	1
7	32012-120166	Échangeur de chaleur à ailettes	680 × 290 × 700 × Φ7 × 1,5 x 2,0	1
8	301070-20080006	Réseau de retour	Feuille galvanisée	1
9	32012-210570	Support moteur	noir 9005	1
10	32012-210493	Plaque de support supérieure	Lignes noires ABS	1
11	32012-210489	Couvercle supérieur	ABS	1
12	32008-210167	Goupille de condenseur	Feuille galvanisée 1.0 noir 9005	1
13	32012-210494	Couvercle du boîtier électrique	Feuille galvanisée 1.2 noire 9005	1
14		Échangeur de chaleur à tubes en		
	301060-20120002	titane	Fil Φ9,52×9 m Φ110	1
15	301070-20120021	Panneau latéral droit	Feuille galvanisée	1
16	32009-220029	Boîte de distribution	B ABS noir	1
17	32009-220029	Partition centrale	Feuille galvanisée 1.0 noir 9005k	1
18	20000-110436	compresseur	5RD160ZAA21	1
19	301070-20120022	Assemblage du châssis	Feuille galvanisée	1
20	20000-360005	Interrupteur de débit	PSL-1 3/4	1
21			0,30 MPa / 0,15 MPa ± 0,05	
	20000-360157	Pressostat	normalement ouvert	1
22			3,2 MPa / 4,4 MPa ± 0,15	
	2001-3605	Pressostat	normalement fermé	1
23			3,2 MPa / 4,0 MPa ± 0,15	
	20000-360059	Pressostat	normalement fermé	1
24	20000-360157	Vanne pointeau	40 mm 1/2" T0305-10	2
25	2000-1460	Trois liaisons	Ф6,5-2 × Ф6,5 (T) × 0,75 Т2М	2
26	304030-00000002	Trois liaisons	Ф9,52-2 × Ф6,35 (T) × 1,0	2
27	20000-140449	Détendeur électronique	DPF(TS1)1.8C-03	1
28	2004-1444	Filtre (R410A)	Ф9,7-Ф9,7 28 Т2Ү2	1
29	20000-140618	Filtre (R410A)	Ф9,7-6,5 (Ф28) Т2Ү2	1
30	20000-140484	Vanne à quatre voies	DSF-9-R410A	1
31		Capteur		
٠.	2000-3242	(Bobine/Aspiration/AT/Entrée/Sortie)	150-502-98674 (5K) 800 mm	5
32	80701652	Boîtier électrique	Noir 9005	1
33	20000-310170	Entraînement à fréquence variable	SA.FNB75GW.1	1
34	32012-210497	Conduite de boîtier électrique	Feuille galvanisée	1
35	95005-310569	Commande PC1002	20000-430177+35005-310569	1
36	20000-390231	Bornier de branchement à 5 bornes.	UTD-32/5P(L1、L2、PE、1、2)	1
37	25500 000201	Demini de branchement à c bornes.	HATF903AS30AC220 AC220 V 30	
51	20000-360297	Relais	A	1
38	20000-360006	Contacteur	HCC-1NU04AA	1
39	2000-3000	Bornier de branchement à 2 bornes.	RS9211(450V~ 4 mm2)	1

6.3 Vue éclatée - HP70AEE

(1) Schéma d'explosion complète de la structure de la machine

(2) Schéma d'explosion de la structure de la commande électrique

(3) Liste des pièces de rechange

N°	Code	Nom	Spécifications	Qté
1	301090-00000004	Boîte avant	ABS	1
2	20000-230596	Marque	250X55	1
3	72200070	CP203	82300038 + 82400012	1
4	20000-220369	Réseau de ventilateur	ABS	1
5	20000-270004	Pale de ventilateur axial	Z500-145	1
6	20000-330132	DC	ZWS75-A	1
7	80701595	Réseau de retour	Feuille galvanisée	1
8	301060-20180001	Échangeur de chaleur à ailettes	714 × 353 × 800 × Ф7 × 2 2,0	1
9	32009-210663	Plaque de support	Feuille galvanisée 1.5 noir 9005	1
10	80900216	Couvercle supérieur	Lignes noires ABS	1
11	32009-210662	Support moteur	Noir 9005	1
12	32009-210658	Couverture électrique	Feuille galvanisée 1.0 noir 9005	1
13	80600265	Échangeur de chaleur à tubes en	Fil Φ12,7 × 7 m + 9,52 × 5 m	1
		titane	Ф160	
14	80701596	Panneau latéral droit	Feuille galvanisée	1
15	32009-220029	Boîte de distribution	B ABS noir	1
16	32009-210664	Partition centrale	Feuille galvanisée 1.0 noir 9005	1
17	20000-110217	compresseur	TNB220FLHMC	1
18	80701594	Assemblage du châssis	Feuille galvanisée	1
19	2000-1460	Trois liaisons	Φ6,5-2 × Φ6,5 (T) × 0,75 T2M	1
20	304030-00000002	Trois liaisons	40 mm 1/2" T0305-10	1
21	20000-140150	Vanne pointeau	9,52-2 × Ф6,35 (T) × 1,0	1
22	20000-140572	Détendeur électronique	DPF(B)2.0C-008	1
23	20000-360157	'	0.30 MPa / 0.15 MPa ± 0.05	1
		Pressostat	normalement ouvert	
24	2001-3605		3,2 MPa / 4,4 MPa ± 0,15	1
		Pressostat	normalement fermé	
25	20000-360059		3,2 MPa / 4,0 MPa ± 0,15	1
		Pressostat	normalement fermé	
26	2004-1444	Filtre (R410A)	Ф9,7-Ф9,7(Ф28) Т2Ү2	1
27	20000-140618	Filtre (R410A)	Ф9,7-6,5 (Ф28) Т2Ү2	1
28	20000-360005	Interrupteur de débit	PSL-1 3/4	1
29	20000-140485	Vanne à quatre voies	DSF-11E-R410A	1
30	2000-3242	Capteur (Bobine/Aspiration/AT/Entrée/Sortie)	150-502-98674 (5K) 800 mm	5
31	20000-390231	Bornier de branchement à 5 bornes.	UTD-32/5P(L1 、L2 、PE 、 1 2)	1
32	20000-390049	Bornes	MSB 2.5-F	1
33	20000-390048	Bornes	MSDB 2.5-M	1
34	20000-390046	Bornes	MSB 2.5-M	1
35	20000-390047	Bornier	D-MSB 1.5-F	1
36	20000-360297		HATF903AS30AC220 AC220 V	1
		Relais	30 A	
37	20000-360006	Contacteur	HCC-1NU04AA	1
38	2000-3909	Bornier de branchement à 2 bornes.	RS9211(450V~ 4 mm2)	1
39	95005-310569	Commande PC1002	20000-430177+35005-310569	1
40	20000-310170	Entraînement à fréquence variable	SA.FNB75GW.1	1
41	32009-210651	Boîtier électrique	Noir 9005	1
•••	,		1 3000	· · · · · ·

Mise en garde et avertissement

- 1. L'appareil ne peut être réparé que par un personnel qualifié du centre d'installation ou par un concessionnaire agréé (pour le marché européen).
- 2. Cet appareil n'est pas destiné à être utilisé par des personnes (y compris des enfants) présentant des capacités physiques, sensorielles ou mentales réduites, ou n'ayant pas d'expérience et de connaissances en la matière, à moins qu'elles soient surveillées ou instruites concernant l'utilisation de l'appareil par une personne responsable de leur sécurité. (pour le marché européen)
 - Les enfants doivent être surveillés pour s'assurer qu'ils ne jouent pas avec l'appareil.
- 3. Assurez-vous que l'appareil et le raccordement électrique sont bien mis à la terre, sinon cela pourrait causer un choc électrique.
- 4. Si le cordon d'alimentation est endommagé, il doit être remplacé par le fabricant, notre agent d'entretien ou une personne de qualification similaire pour éviter tout danger.
- 5. Directive 2002/96 / CE (DEEE):
 - Le symbole représentant une poubelle barrée située sous l'appareil indiqu'à la fin de la vie utile de ce produit, il doit être manipulé séparément des ordures ménagères, il doit être amené dans un centre de recyclage des appareils électriques et électroniques ou remis au concessionnaire lors de l'achat d'un appareil équivalent.
- 6. Directive 2002/95/CE (RoHs): Ce produit est conforme à la directive 2002/95/CE (RoHs) sur les restrictions d'utilisation de substances nocives dans les appareils électriques et électroniques.
- L'appareil NE PEUT PAS être installé à proximité d'un gaz inflammable. En cas de fuite de gaz, un incendie peut se produire.
- 8. Assurez-vous qu'un disjoncteur soit prévu pour l'appareil. Son absence peut provoquer un choc électrique ou un incendie.
- 9. La pompe à chaleur située à l'intérieur de l'appareil est équipée d'un système de protection contre les surcharges. Il empêche l'appareil de démarrer pendant au moins 3 minutes après un arrêt précédent.
- 10. L'appareil ne peut être réparé que par le personnel qualifié d'un centre d'installation ou par un concessionnaire agréé. (pour le marché nord-américain)
- 11. L'installation doit être effectuée par une personne autorisée uniquement conformément à la norme NEC/CEC.
 - (pour le marché nord-américain)
- 12. UTILISEZ LES CÂBLES D'ALIMENTATION ADAPTÉS À 75°C.
- 13. Mise en garde : L'échangeur de chaleur à paroi unique ne convient pas au raccordement de l'alimentation d'eau potable.

Spécification du câble

1. Appareil monophasé

Plaque signalétique courant maximum	Ligne de phase	Ligne de terre	МСВ	Protecteur de ligne de fuite	Ligne de signal
Pas plus de 10 A	2 × 1,5 mm2	1,5 2	20 A	30 mA moins que 0,1 sec	
10 ~ 16 A	2 × 2,5 mm2	2,5 mm2	32 A	30 mA moins que 0,1 sec	
16 ~ 25 A	2 × 4 mm2	4 mm2	40 A	30 mA moins que 0,1 sec	
25 ~ 32 A	2 × 6 mm2	6 mm2	40 A	30 mA moins que 0,1 sec	
32 ~ 40 A	2 × 10 mm2	10 mm2	63 A	30 mA moins que 0,1 sec	
40 ~ 63 A	2 × 16 mm2	16 mm2	80 A	30 mA moins que 0,1 sec	n × 0,5 mm2
63 ~ 75 A	2 × 25 mm2	25 mm2	100 A	30 mA moins que 0,1 sec	
75 ~ 101 A	2 × 25 mm2	25 mm2	125 A	30 mA moins que 0,1 sec	
101 ~ 123 A	2 × 35 mm2	35 mm2	160 A	30 mA moins que 0,1 sec	
123 ~ 148 A	2 × 50 mm2	50 mm2	225 A	30 mA moins que 0,1 sec	
148 ~ 186 A	2 × 70 mm2	70 mm2	250 A	30 mA moins que 0,1 sec	
186 ~ 224 A	2 × 95 mm2	95 mm2	280 A	30 mA moins que 0,1 sec	

2. Appareil triphasé

2. Appareii tripnase					
Plaque signalétique maximum maximum	Ligne de phase	Ligne de terre	МСВ	Protecteur de ligne de fuite	Ligne de signal
Pas plus de 10 A	3 × 1,5 mm2	1,5 2	20 A	30 mA moins que 0,1 sec	
10 ~ 16 A	3 × 2,5 mm2	2,5 mm2	32 A	30 mA moins que 0,1 sec	
16 ~ 25 A	3 × 4 mm2	4 mm2	40 A	30 mA moins que 0,1 sec	
25 ~ 32 A	3 × 6 mm2	6 mm2	40 A	30 mA moins que 0,1 sec	
32 ~ 40 A	3 × 10 mm2	10 mm2	63 A	30 mA moins que 0,1 sec	
40 ~ 63 A	3 × 16 mm2	16 mm2	80 A	30 mA moins que 0,1 sec	n × 0,5 mm2
63 ~ 75 A	3 × 25 mm2	25 mm2	100 A	30 mA moins que 0,1 sec	11 ^ 0,3 111112
75 ~ 101 A	3 × 25 mm2	25 mm2	125 A	30 mA moins que 0,1 sec	
101 ~ 123 A	3 × 35 mm2	35 mm2	160 A	30 mA moins que 0,1 sec	
123 ~ 148 A	3 × 50 mm2	50 mm2	225 A	30 mA moins que 0,1 sec	
148 ~ 186 A	3 × 70 mm2	70 mm2	250 A	30 mA moins que 0,1 sec	
186 ~ 224 A	3 × 95 mm2	95 mm2	280 A	30 mA moins que 0,1 sec	

Veuillez utiliser un câble qui peut résister aux UV lorsque l'appareil est installé à l'extérieur.

6.4 Garantie

Hayward Pool Products Canada, Inc. T: 1-888-238-7665 www.haywardpool.ca